Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Environmental Health and Toxicology ; : 2017006-2017.
Article in English | WPRIM | ID: wpr-786733

ABSTRACT

This study was conducted to evaluate the ability of plants to purify indoor air by observing the effective reduction rate among pollutant types of particulate matter (PM) and volatile organic compounds (VOCs). PM and four types of VOCs were measured in a new building that is less than three years old and under three different conditions: before applying the plant, after applying the plant, and a room without a plant. The removal rate of each pollutant type due to the plant was also compared and analyzed. In the case of indoor PM, the removal effect was negligible because of outdoor influence. However, 9% of benzene, 75% of ethylbenzene, 72% of xylene, 75% of styrene, 50% of formaldehyde, 36% of acetaldehyde, 35% of acrolein with acetone, and 85% of toluene were reduced. The purification of indoor air by natural ventilation is meaningless because the ambient PM concentration has recently been high. However, contamination by gaseous materials such as VOCs can effectively be removed through the application of plants.


Subject(s)
Acetaldehyde , Acetone , Acrolein , Benzene , Formaldehyde , Particulate Matter , Plants , Styrene , Toluene , Ventilation , Volatile Organic Compounds , Xylenes
2.
Environmental Health and Toxicology ; : 2017010-2017.
Article in English | WPRIM | ID: wpr-786729

ABSTRACT

Traffic-related pollutants have been reported to increase the morbidity of respiratory diseases. In order to apply management policies related to motor vehicles, studies of the floating population living in cities are important. The rate of metro rail transit system use by passengers residing in Seoul is about 54% of total public transportation use. Through the rate of metro use, the people-flow ratios in each administrative area were calculated. By applying a people-flow ratio based on the official census count, the floating population in 25 regions was calculated. The reduced level of deaths among the floating population in 14 regions having the roadside monitoring station was calculated as assuming a 20% reduction of mobile emission based on the policy. The hourly floating population size was calculated by applying the hourly population ratio to the regional population size as specified in the official census count. The number of people moving from 5 a.m. to next day 1 a.m. could not be precisely calculated when the population size was applied, but no issue was observed that would trigger a sizable shift in the rate of population change. The three patterns of increase, decrease, and no change of population in work hours were analyzed. When the concentration of particulate matter less than 10 μm in aerodynamic diameter was reduced by 20%, the number of excess deaths varied according to the difference of the floating population. The effective establishment of directions to manage the pollutants in cities should be carried out by considering the floating population. Although the number of people using the metro system is only an estimate, this disadvantage was supplemented by calculating inflow and outflow ratio of metro users per time in the total floating population in each region. Especially, 54% of metro usage in public transport causes high reliability in application.


Subject(s)
Censuses , Korea , Motor Vehicles , Particulate Matter , Population Density , Seoul , Transportation
3.
Environmental Health and Toxicology ; : e2017006-2017.
Article in English | WPRIM | ID: wpr-203751

ABSTRACT

This study was conducted to evaluate the ability of plants to purify indoor air by observing the effective reduction rate among pollutant types of particulate matter (PM) and volatile organic compounds (VOCs). PM and four types of VOCs were measured in a new building that is less than three years old and under three different conditions: before applying the plant, after applying the plant, and a room without a plant. The removal rate of each pollutant type due to the plant was also compared and analyzed. In the case of indoor PM, the removal effect was negligible because of outdoor influence. However, 9% of benzene, 75% of ethylbenzene, 72% of xylene, 75% of styrene, 50% of formaldehyde, 36% of acetaldehyde, 35% of acrolein with acetone, and 85% of toluene were reduced. The purification of indoor air by natural ventilation is meaningless because the ambient PM concentration has recently been high. However, contamination by gaseous materials such as VOCs can effectively be removed through the application of plants.


Subject(s)
Acetaldehyde , Acetone , Acrolein , Benzene , Formaldehyde , Particulate Matter , Plants , Styrene , Toluene , Ventilation , Volatile Organic Compounds , Xylenes
SELECTION OF CITATIONS
SEARCH DETAIL